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The present Notes are based on a seminar given in
1967 at the University of Notre Dame. The purpose was to
cover the maln results related with the canonical linear
representation of Coieter groups and the realizations of
Coxeter groups as properly discontinuous groups generated
by reflections. Beside an algebraic introduction the main
topics are: 1) the geometric properties of the canonical
~ representation (results of Coxeter and Tits); 2) the linear
representations close to the canonical representation
(examples of Vinberg and Katz); 3) the determination and the
properties of hyperbolic Coxeter groups (1arge part of the
material in this section comes from F. Lanner and N. Bourbaki);'
4) some results of Vinberg on arithmetic and non arithmetic
hyperbolic Coxeter groups.

The Notes have been written by Takushiro Ochiai; I

express my hearty thanks to him.
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Chapter I. Coxeter Groups

§1. Groups Generated by Reflections.

Let E be a finite-dimensional real vector space and
E* the dual space of E. We denote by < , > the pairing
between E and E¥, A reflection of E is a linear map r:E — E

defined by the formula
r(x) = x - 2<x,f>e for any x ¢ E;

Where e and T are elements in E and E* respectlvely such
that <e,f> =1,
Let M be a connected differentiable manifold. By a

reflection of M, we mean g diffeomorphism r of M such that

(i) r° = the idehtity;

(11) the set {x e M|r(x) ¥ x} is not connected.

(It is eaSy to see that this set has just two connected
components. )

Let W be a group of diffeomofphisms of a simply connected
manifold M, acting pfoperly* on M and generated by a finite

set of reflections. Then the following result is known.

* This means that the map P:WX M —» MX M defined b{ o(w,x) =
(wx,x) is a proper map, i.e. the inverse image ¢~ 1(X) of any

- compact set K in M X M is compact.
1
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[J. L. Koszul, Lectures on Transformatlon Groups. Tata

Institute of Fundamental Research, 1964 ]

' Theorem'l—l.' There exists a finite set T 1Q'W

satisfying the following conditions:;

(a) Every element in T is a reflection of M;

(b) For any t and t' in T let p,., denote the order

of tt' in W. Then the group W is presented by

the set of generagtors T and the set of relations

P
(tt1) tt!

=1 (t, t' €T, Pryy < %),

Remark 1-1. The condition (b) means the following:
Let F(T) be the free group generated by the finite set T.
Denote by p:F(T) —» W the natural homomorphism of F(T) onto
W. Then the kernel of 7 is the invariant subgroup generated

p
by the (t8') “U' in F(T) (b, t' € T, B, < 9.

§2. Coxeter matrices and Coxeter groups.

Let W be a group and S a set of elements of order 2 in W.
Let N = {1,2,...,°% be the set of all the positive integers
and the symbol =, For any (s,t) € S X S, let Pgy € N be the i

order of st. Then




(1) Pot = Pyg for t € S and s e S

i

(ii) Pgg = 1 for s € S
(1i1) pg > 1 if s # .

Definition 2.1. A Coxeter system (or Coxeter group)

15 a group W with a set S C W satisfying the conditions:

a) each s € S ig of order 2,

'b) S is a set of generators for W,

c) if Py denotes the order of st, then W is presented

by the set of generators S and the set of relations

pst
(st) =e (s, t e g, Py < ©),

A matrix (pst) with indices in a finite set S and with entries

in N is called a Coxeter matrix if it satisfies the conditions

(1), (ii); (1ii1). For any Coxeter system WP = {W,S} the matrix
(ﬁ?%) with indices in S where ﬁz%.is the order of st is a

Coxeter matrix called the matrix of the-Coxeter system {W,S}.

From b) and c¢) in Definition 2.1 it follows that W is determined
up to an isomorphism, by the Coxeter matrix (éﬁl)}

We shall prove in Chapter II that eny Coxeter matrix is

the matrix of a Coxeter system.

Example 2-1, To any discrete group of diffeomorphisms

of & simply connected manifold, acting properly and generated




by_feflections corresponds a Coxeter system,

Example 2-2, Let W be a group generated by two elements
8, t of order 2. Then {W, s, t} is a Coxeter system; W is

a dihedral group.

§3. Length and Reduced Expressions.

Let W be a group and S C W a set of generators of order 2.

Every element w e W may be written in the form
(3"1) W = Sl . S2 e e o e e S

By a reduced expression of w we mean a decomposition (3-1)

of w with the miﬁimal number of sj's. The length £(w) of w
- with respect to 8 is the number of the factors Sj in a reduced
expression of w. Note that £(w) = O means w= e and £(w) = 1

means w € S,

Proposition 3-1. For any w, w’> € W

LYy = £(w)
D) = B(w) < B(nw) < B(w) + £(w’)

Proof., If w = 8185 «ee B, is a reduced expression of W,
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- -1
then w S,8y.71 +o+ 89, hence f(w .) S.ﬂ(w) and there-

fore ﬂ(w—l) = L(w). If w’

I

b4 2 2 s
81 85 «e. 85 18 a reduced

1

expression of w’, then ww’ 8185 oo 8 s? sé ...~sé, hence

r1
L(wa’) < v+ s=L(w) + £(w). On the other hand,
B(u) = L0ww (0 )7) < LGww) + L(w).
From now on weé denote by {W,S} a Coxeter system. The
length £(w) of an element in W will always be the length with

respect to the set of generators S.

Propqeition 3.2, Let {W,S} be a Coxeter system and let

A= {1,-1} be the multiplicative group of order 2. There

exists a homomorphism ¢ of W onto A such that o(S) =-1 for

all s € S,

Proof. Let F(S) be the free group generated by the set
S. TLet ¢ be the homomorphism of F(S) onto A such that ¥(s) = -1
for all s € S. The kernel of ¥ contains all elements of the
form ss’ with s € S and s’ ¢ S. Therefore it contains the
kernel of the homomorphism p:F(S) - W which extend the natural
injection S —» W. Since p is surjectiv, there exists a
homomorphism ¢:W — A guch thatlw = ¢ O p. We have ¢(S) =
e(p(S)) = y(s) = -1 for every s e 8.

Corollary 3-1. Let {W, S} be a Coxeter system. TFor




any w e W and any w’ e W, £(ww’) = £(w) + £(w’) mod 2.

Corollary 3-2, Let {W,S} be a Coxeter system; For

any w e W and any s ¢ S, #(ws) is either equal to £(w) + 1

or to £(w) - 1.

Now we are going to prove the following theorem.

Theorem 3-1. (Matsumoto [7]). Let {W,S} be a Coxeter

system and w € W and s ¢ S. Let w = sl...sp_be a_reduced

expression of w. If #(ws) < £(w), then there exists a

unique integer J e [1,p] such that ws = 81 «e- Q} “ee Spe

Let F(S) be the free group generated by the set S and
P the natural homomorphism from F(S) onto W. For every
8 € S, let s be the same element regarded as an element of
F(8), so that p(s) = s. Let M be the subset of F(S) consisting
the identity e and all elements of the form 518, ... 8, with

S; € S and g > 0. Let X be the set of elements in W conjugate

to an element in S. Define a homomorphism A from F(S) into

the group of permutations P(X) of X by the formula
-1\
A(u)x = p(u)x p(u ™)

for every u ¢ F(S) and every x ¢ X. Let m = 518, -0 8y be

any element in M and x be any element in X. We denote by
h(m,x) the number of indices i ¢ [1,p] such that

s. = A(

1 §p)x. In the case i = p the above equation

Ei"l‘l s 00




.._‘7_
means that s, = x. In other word‘s,»h(gl_s__2 <o §p,x) is
the number of indices i € [1,p] such that x = Sy Spoq ve

Lemma 3-1. PFor any m, m' in M, we have

hmw,if=hm,Amﬁﬂﬂﬁﬂw,x%'

This follows immedigtely from the definition of h.

Temma 3-2. Let (pss') be the matrix of {w,s}. For

all s, s' € 8 such that Pss' < ®gnd for all x ¢ X, we

ss!

have h((ss") » X) = 0 mod 2.

Proof., For.each k e [1,p], set Sop_1 = S and Sop = 8!

and set p = p .,. Then we have (ss')P = 818p +++ Bppe Put
Pop = Spp and by = 55 ee Byy1 By Byyp eee Spp Tor e [1,2p -

Then we have bj—l = Spp eee 847 558457 +-- Son

= (8pp === 851 85 85,0 -+ 8p)(s8) = by(se'), since
= | = ‘ p =

55 % B540 for all j. Then we get bj—p bj((§§') ) bj

for all j in [p+l, 2p]. It follows immediately that h((§§')p, X

is an even integer.

Lemma 3-3. h(m;x) = h(m',x) (mod 2) for all x € X and

all m, m' € M such that p(m) = p(m').




Proof. Define gn action of the semi~group M on

the product set A X X by the formula
s+ (ax) = ((-1)PEF)a, a(s) - x)

for any s € S. This is well defined, since frbm Lemma 3~1

we can easily check that
m e (ax) = ((1)2%a, am) - x)

for all m e M. Now the elements of form (gﬁ')PSS' (Pygr < )
induce the identity permutation on A X X, since

h(@§')PSS', x) = 0 (mod 2) by Lemms 3-2 and p((ss')PSS') = e,
Therefore we may define the action of W on A ¥ X by the

formula,
p(u) * (a;x) = u + (a,x) (u e M)

Therefore m * (a,x) = m' . (a,x) for any m, m' € M such that

il

p(m) = p(m'), which implies h(m,x) = h(m',x) (mod 2).

Lemmg 3-4. If the length of 81 oo Sy is p, then

h(sl ee S x) is equal either to O or to 1 for any x € X.
Proof. Put bp = Sp and bj = sp oeo .sJ.+1 Sj Sj+l N sp
for any j in [1, p-1]. Suppose now that h(sl “re Bp x) > 2.

e
AR




Then there exist indices i, j (1 £1i<J<p) such that

b. = b.. Then we get s. s

l J J Jo_l LI 3 Y S- S. S L I S.—l=e,

i+l 71 Ti+l J
and hence si Si+l-... Sj—l = si+l eoe Sj' Then we have

Sy eee 8y = (s «eo s 1)(s5 «vn Sj—l)(sj cen sp)
= (81 v 85.1)(8507 o- Sj—l)(sj ce sp), which implies
that the length of Sy ees sp is less than p and this is a

contradiction.

Proof of Theorem 3-1. ILet w =.8; ... sb (p = £(w))

1 1

b

! t
and assume f(ws) = p - 1. Let ws = S1 8p eer By g (Sj € $)
l LI B Sp::
5) =

be a reduced expression of ws. Then we have w = s

1 !

81 +++ 8, 1 8. By Lemma 3-3, we have h(s; ...

.S_p’
s, 8) (mod 2). By Lemma 3-4, h(gi cer By

: ! !
is elther O or 1. But clearly h(s; ... Bpo1 & s) > 1 and

8, 8)

hence h(s; ... [Ny
integer j in [1,p] such that Sy oees Byyq B4 Sypq oo St

Then we have Sy S441 - sp S = Byiq eee sp. Thus we get ws

1 e Qj cer Bpe The uniqueness assertion follows

immediately from Lemma 3-4,

S) = 1. This shows that there exists an

= 8

Corollary 3-3. If w = s; ... 5, is of length < p, there

exist integers i, j (L < i < § < p) such that

5 g s
) ¢ o @ S L4 L N L]
i J P

W=S LI ]
1

Proof. Let Po be an integer in [1l,p] for which we have
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vﬁ(él ceo spo) = py and ﬂ(sl ce Spo+l) < Py + 1. Then
by Theorem 3-1, there exists an integer 1 (1 < 1 < py)
' A

such that sl oo Spo+l = sl e si e spo and thus
_ - n n
Sl * o o Sp Sl ® o Si LN I ) Spo+l LB B ) Sp.

We now prove the converse of Theorem 3_1., Let G be
a group generated by a finite set S of elements of order
2. We can define the length of an element of G. If the
asée;tion* of Thebrém 3-1 is satisfied, we 'say that the

group G satisfies the EX-condition.

Theorem 3-2. (Matsumoto [7]). Let G be a group

generated by a finite set S of elements of order 2. If

———

the group G satisfies the EX-condition, then {G,S} is a

Coxeter gystem,

Theorem 3-2 follows easily from the following

proposition,

Proposition 3-3. Let G be g group generated by a

finite set S of elements of order 2, Suppose there exists

an invariant'subgroup K of G contained in G - 8 such that

the guotient group G/K satisfies the EX-condition with

respect to the imgge of S.in G/K. Then K is generated by the

*¥ The uniqueness assertion is not necessary since it follows
from the rest of the assertion.




Pog
elements of form (ss') ®° (s; s' ¢ g, Pgg1 < ), where

Pggr 1s_the order of the coset in G/K containing ss'.

The prodf of Proposition 3-3 is divided into several

lemmas.

Lemma 3-5. The length of any element in K is even,

Proof. ILet w = Sy ee. 8., be a reduced expression of

any element w in K. Let_ﬂ:G - G/K be the natural homomorphism.,
Then we have w(w) = m(s1) m(sy)...m(s,) = e. By the Ex-
condition on G/K, r must be even since the length of

e = j(sl)...ﬂ(sr) 1s zero, (see Corollary 3-3).

Lemma 3-6. Assume K is not trivial and let n = 2p be

the minimum of the lengths of the elements in K - {el}. If

an _element S1eee8y,7 1s of length p + 1 and ﬂ(sl...sp+l) is

of length < p + 1, then Speees is of length p + 1

S._.4 8
P “p+l “p
and ﬂ(Sg...Sp+l sp) is of length < p f 1. Eurthermore

82"°Sp Sp+l sp...sl belongs to K.

Proof. By the EX~condition on G/K there exist integers
1, J(L<i<ci<p+ 1) such that ﬂ(sl...s

/N )
JAS 4% /-
ﬂ(sl...si...sj...sp+l). Hence BpeeeSppy SppgecSjeeeSgeeesy

belongs to K. Since any element in § is of order 2 and since

. K is invariant, Si"'sj‘°’sj—l"'si+l belongs to K. We will
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show that 1 = 1 gnd j = p + 1., In fact, if this were not

the case, the length of Si"‘sj Sj~l'°°si+l would be

strictly less than 1 = 2p. From the definition of the

number n = 2p, we have SjeeeB = e, Then

J %g-10®i41

Si"'sj = Si+l"°sj—l and this is impossible since

si...sp+l is a reduced expression., Thus i = 1 and J=p+ 1

1. i i
and ‘hence Sl"‘sp+1 sp...52 belongs to K. Since X is

1nyar1ant, SE"°Sp+1 sp...s2 sl_belongs to}K, which proves
the last assertion. By the same argument, we can see that

the length of Speee8 is p + 1. The other assertions

p “p+1 ®p
= m(s

follow from ﬂ(s2...s ¢+ o8

p+1l Sp) p-1 l)'

Corollary 3-4. In the notations of ILemma 3-6, we

have (sp Sp+1)p € K- {e}.

Proof; The element Speee8 also'satisfies the

p p+l ®p
conditions of Lemma 3-6. Applying Lemma 3-6 repeatedly, we
find that eventually one of the two cases is possible.

p+1

T e o i R e,

(1) ifp =0 (2), Sp Spr1teSpr1 is of the length p +

and s_ s .., S, 8 .1...5_ €K
M p \Np+l ..../p ’
p+1 b
(2) if}p = 1(2), Sp Spp1eteSp Spip 1s of the 1ength_p +
TN '
p+1
p
and (sp Sp+l) € K.
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Since K is invariant, the case (1) cannot occur. Since

the length of s ,;.sp is p + 1, the length of (s_ s _ )P

P Sp+l e p+l
p+1

. \p
is greater than 2. Hence (sp Sp+l) # e,

Proof of Proposition 3-3. Iet K' be the invariant

b
subgroup generated by all elements of the form (ss') 88!

(pss‘ < ®). Obviously, K' is contained in K. TWe denote by

g

G (resp. X) the quotient group G/K’(resp K/K'). We also denoté

1

by s the coset of 8 € 8§ in G/K' Then G and X also satisfy
the conditions in Proposition 3-3, Suppose K is not trivial.

let w=T§ be an element of K - {identity} with the

l...Sgp
minimal length. Then sl...sp Sp+1 satlisfies the condlf}ons
of the Lemma 3-6, By Corollary 3-2, we have (s— Sp+1)p

€ K - {identity}. But this is impossible since (s 541)p

is the identity, by the definition of K.

Corollary 3-5. Let {W,S} ve a Coxeter system. Tet S

be a subset of S and W' the subgroup of W generated by S'.

Then {W',S'} is a Coxeter system.

Proof. Since the EX-condition holds in W, for any w e W'
the length of w as an element of W with respect to S equal to
the length of w as an element of W! (with respect to S'). We
can then apply Theorem 3-2 to {W',S'},
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§$4. The Graph of a Coxeter Group

Let (PSS,) be a Coxeter matrix with indices in a

finite set S. The graph of the Coxeter matrix (Pggr) is

by definition a l-dimensional simplicial complex G (Pegt)
with vertices {Vs}ses such that two vertices VS and v, are
the boundary of a l-simplex in %F(PSS,) if and only if
Pss' 2 3.

When the graph of a Coxeter matrlx is connected the

Coxeter matrlx is called 1rredu01ble. Tet UL = {w,8} ve a

Coxeter system. The graph if(ﬁﬁ of 94) is by definition '

that of the Coxeter matrix (PSS,). The Coxeter system is

3

called irreducible if the Coxeter matrix (PSS,) is irreducible.f

Remark 4-1. When @ is not connected, let { %P&} be the

)

connected ‘components of %V. If Sa denotes the set of elements

5 € S corresponding to a vertex in 2?&, then W is the direct
product of the subgroups Wd generated by Sa' For each o,
%?a is the graph of the Coxeter system {wa’Sa}'

§5. The Canonical Bilinear Form of & Coxeter Group.

Let (PSS,) be & Coxeter matrix with indices in a finite
set S. Denote by {es}SeS the natural basis of_E@S. We

define a bilinear form B on E{S as follows:




ss!

The bilinear form B is called the canonical bilinear

form of the Coxeter matrix (PSS,). In particular

B(ey> e ) = 1
Let D =
bilinear form

“bilinear form

for each & € S.

{W,S} be a Coxeter system. The canonical

B of the matrix of %2 is called the canonical

of U3 .




Chapter IL

Linear Representations of Coxeter Groups

§6. The Canonical Representation of a Coxeter Group.

Let S be a finite set and (pyy,) be a Coxeter matrix

with indices in S. ZILet F(S) be

by S. For any s € S, we define

as follows:
p(s)x = x ~ 2B(x,e.)e,

Lemma 6-1. For any x € S,

B is invariant under p(s).

In fact, for any s € S and

the free group generated

a reflection p(s) of BS = E

for any x € E.

the canonical bilinear form

any x € L,

B(p(s)x, p(S)x)v= B(x - 2B(x,e )eys X —.EB(x,eS)eS)

= B(x,x) - 4B(X,es)2 + 4B(x,es)2 B(eg,e.) = B(x;x).

Temma 6-2. For any s € S and s' € S, the order of

p(S) p(sl) j‘.épssl’

Proof. (As page 18).

Let K be the invariant subgroup in F(S)

emma, 6-3.
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q be the canonical homomorphism of F(S) onto F(S)/K. Then

a) gq is iﬁjective on S,

b) for any s € S, q(s) is of order 2,

c) WP = {F(S)/K, q(8)} is a Coxeter system,

d) the matrix ﬁmp

“aq(s)

a(s') of %) is given by

pz{zs)q(s{) = Pggr . '(S’ s! 618).

Proof. Lemma 6-2 shows that there exists a linear

representation o of F(S)/K in BS such that o(s) = p(q(s))

for any s € S. Therefore the order of g(s)g(s') is Pogre

Since s # 8! implies Pger > 1, a is injective on S. Since
Pgs = 1, q(s) is of order 2. The statements c) and d) are
now obvious.

Proposition 6-1. Any Coxeter matrix is the matrix of

a Coxeter system.

Proof, TFollows from Lemma 6-3.

Proposition 6-2, ILet {W,S} be a Coxeter system and

let B be the canonical bilinear form of {W,S}. There exists

one gnd only one linear répresentation p 9£ W EQ_BS sﬁch that
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for's ¢ S, x‘efRSu

Proof. The existence follows from Lemma 6-2. Since

W is generated by S, unigueness holds.

The linear representation p of W inIRS is called the

‘Canonlcal representatlon of the Coxeter group W. The

canonlcal bilinear form is 1nvar1ant under this representation.

Proof of Lemma 6-2. It is clear that (p(s))2 is the

identity. Therefore we may assume s ¥ s', Since B(es,es,) =

- cos . < 1, the restriction of B to the two-dimensional
‘SS' : .

subspace F = e, + e,y of E is positive definite. Put

rl= {x € E|B(x,F) = 0}.. Then we have E = F ® Fl(direct sum) .
It is easy to see that both F and F! are invariant under |
P(s) and p(s'). Since both p(s) and p(s') act on F!' as the

identity transformation, we need only consider the restriction

Il

of (p(s) p(s')) to F. We have.p(s') p(s)e, —e, - 2cos

Hence B(p(s') p(s)e_, e ) = -1 + 2cos® —— = cog 21
i ° Pss pss'

p
This shows that (p(s) p(s!')) 58" 15 the identity trans-

ss!

formation of E, and that the order of p(s) p(s') is precisely

Pggr®

e

il

st
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§7. DProperties of the Canonical Representation.

Let 22¥ = {W,S} be an irreducible Coxeter system, B
~ 1ts canonical bilinear form and p:W - GL(E) the canonical

representation.

Proposition 7-1. Any invariant subspace F(# E) of the

canonical representation p is orthogonal to E with respect

to the canonical bilinear form B.

Proof, We first show that F contains no element of the

basis {e (s € 8)}. In fact, let S' = {s ¢ SleS € F} and

assume S' is not empty. Since %Y is irreducible and F # B, 7
there exist e € S' and ey € 8 - 8' such that B(ey, e,,) # O. Il —
Then.p(t')e, = e, ~ 2B (e, » e 1)ey s L.e.

2B(ey, ep,)ey, = e, - p(t')e,. Since F is an invariant
subspace, e, - p(t')ey is in F, so that e, must be in F.

This is a contradiction., Now, take any x € F. For any s ,

in S, we have

x - p(s)x = 2B(x,eg)eg; i.e. 2B(x,e )e, € F

and therefore B(x,eg) = 0 for all s ¢ §.

Proposition 7-2. If the canonical bilinesar form B is

degeherate,'then the canonical representation p is not
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completely reducible,

Proof., Define E° by {x e E|B(x,E) = 0}. Since B
is invariant under p(W), E® is an invariant subspace of

p. Since B(ey, e ) = 1 for all s € 8, and since B is

s
degenerate, £° is a non-trivial subspace. Suppose P is
completely reducible, then there exists & non-trivial

invariant subspace F such that
E=E oF,

But F C E° by Proposition 7-1. This is a contradiction.

Therefore p is not completely reducible.

Corollary T7-1., If the canonical bilinear form B is

degenerate, W is an infinite group.

Theorem 7-1. (Witt). Let ¥” = {W,S} be a Coxeter

system, The group W is finite if and ohly if its canonical

bilinear form B is positive definite,

Proof. See [11],

§8. The Fundamental Cone.

We consider the dual representation (denoted by p*)

of the canonical representation p:W — GL(E) of a Coxeter
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group. For each g ¢ S we define an element eg € E¥ by

<Y e§> = B(y, es). Then we have

p*(s)x = x - 2<x,es>e§

(s €S, yekE xe E*)

i

B
p(s)y V- y,egde,

We write wx instead of p¥(w)x for w € W and x e E*,

For any s € S, we define Asi(resp.st)'by

A, = {x ¢ E*l<es; x> > 0} (resp. Hy = {x ¢ E*l<es, x> = 0}).

Then E = A_ U H, LJSAS (disjoint union) and s is the identity

transformation on Hy. Now we define a cone C in E* by

¢\,

s€S

and call C the fundamental cone of the Cbxeter group W. Then.

T={x ¢ E*|<es,x> > 0 for all s in S}.

Lemma 8-1. For any s, s' € S (s # ') and w ¢ W{S 51}
. ——2 ———r e ) 3

(the subgroup of W generated by s and s') either

(2) w(agMay,) C Al and £(sw) = £(w) + 1,
or

(11) w(a, Ma,,) C sA  and f(sw) = b(w) - 1.
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Proof. It is easy to prove the lemma when

W= W{S g1} But the general problem may be reduced to this casd ’
' L) .

Lemmg, 8-2. For any s € S and w € W, either

(1) weC A  and £(sw) = £(w) + 1,
or ‘

(2) wcC sA, and L(sw) = £(w) -.1.

Proof. ILet (P,) and (Q ) (n & N) be the following
éssertions’.

4

(P,) for any s € S and w € W of length n, either

‘(i)- we C A,

or

(i1) wC(C sAj and L(sw) = L(w) - 1,
(Q,) for any s, s' € S (s # s') and w e W of length .
n, there exists a u e W, , such that wCC u(A; MA )
and £(w) = £(u) + f/(u_lw). | 7
[I]. We first show that (P,) and (Q,) together imply
(Pn+l)' In fact, take w of length n + 1. We may write

w=s'w' (s'e$8, £(w') = n).

(2) If s' =s, apply (P,) to w' and s.
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‘Since £(sw') = L(w) > £(w'), the second case in (P,)
does not occur, Therefore wC = sw'C C sA, and
2(sw) = ﬁ(w').= ﬂ(w).ﬁ 1. This is the second case in
(Pn+l)

(b) If s' # s, apply (Q,) tow', s' and s.
Then there exists u e W, , such that w'c C u(ASr”1AS,), and
L(w')y = £(u) + ﬁ(u_lw'); Hence wCC s'w'CC s'u(A, MA_,).
Since s'u € W, ,, we apply Lemma‘B—} to s'u,. s' and s.

Then either

L(s'u) + 1,

I8

(1) s'u(AgMA,,) C A, and [(ss'u)

or

il

(11) s'u(AgMAy,) C A and £(ss'u) = £(s'u) - 1.

When the case (1) occurs, we have wC.C s'u(Ag MA,,) C A,
implying the first case in (P, ;). When (ii) occurs, we
have wC C s'u(Ag MA ) C sA, and £(sw) = ﬂ(;s'w') =
ﬂ(ss'uu_lw') < £(ss'u) + ﬂ(u"lw') = f(sIu) - 1+ £(w') -
L(u) < B(w') < £(w) (the equality in the middle comes from
L(w') = L(u) + A(u Tw') and £(ss'u) = b(s'v) - 1). This is

the second case in (P Thus we have proved that (P ) and

n+l)'
(&) im0ly (P, ).

[II]. We now prove that (Pppp) and (Q)) imply (Q,.).
In fact, take w € W of length n + 1. Assume that




_ ol _

(a) wC(C Aj and wCC Agye
Then (Q,,,) holds, with u = e. When (a) is not the case,
we may assume (by (P ,q)) wCC sA  and £(sw) = £(w) - 1.
Let w! = sw. Then the length of w' is n. Applying (Qn)
to w!', 8 and s', there exists u in Wss' such that

lsw). Hence

swC C u (A, MA,) and £(sw) = £(u) + £(u
wC C su(AS!h\AS}). Since su € W, , we have only to show
~that £L(w) = L(u) + ﬂ(u—lw). We have £(w) = L(sw) + 1 = £(u) +
ﬂ(u—lsW) + 1 > £(su) + E(u—lsw)‘z £(w), so that L(w) = L(su) +
ﬂ(u"lsw). Thus we have proved that (P ) and (Qn) imply
(1) - |
Now the assertions (P,) and (Qy) hold. Therefore we
have proved Lemma 8-2 except for the last assertion in casé
(1). To prove that L(sw) = £(w) + 1 in case (1), suppose
wC C Ag. Then we have swC C sAy, which implies L(se-sw) =

L(sw) - 1 and thus £(sw) = £(w) + 1.

Theorem 8-1. If wCC#+ ¢ (w € W), then w is the

identity.

Proof. Suppose wC M C ¥+ ¢ and w were not the identity.

ILet w = S1eee8y, be a reduced expression for w. Lemma 8-2
shows that wCC A, and £(sw) = £(w) + 1. In particular
: 1

wevhave E(w)'= £(spe.e8,) - 1, which is imposéible.
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Corollary 8-1. The representations p and p* are

faithful,

§9. The Faces of The Fundamental Cone and The Main Lemma.é ‘

For any subset X of S, we define a simplex C, by

teS-

& = () 1) N </\X ag).

Welremafk C¢ = ¢, The faces of C consist of'CX where X

ranges over all subsets of S,

Main Lemma. ILet w and w' be elements in W and X and X!

subsets of 8. If WCXI”\W'CX, + ¢, then X = X' and WWx = W'Wx,

~where W, is the subgroup of W generated by XC S.

Proof'. Without loss of generality, we may assume w' = e,
Webshall prove the lemma by induction on the length of w.

(1) When £(w) = O (i.e. w = e), the lemma is trivial
since CXfA\CX, + ¢ clearly implies X = X'.

-~ (ii) Suppose the lemma is true for all elements of

length < £(w) (£(w) > 0). Since £(w) > 0, there exists an
s € 8' such that £(sw) = £(w) - 1. From Lemma 8-2, we have
wC C sAg; in particular we have w@(: sKé. On the other hand,

we have
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¢+w%fwaHWOECs&rﬁs=%.

Hence C_, MH, + ¢, which implies s € X', In particular,
Cer C H,. Since s is the identity on H,, we have

= swC, M C Since swC, M C,, + ¢ and

x'e
£(sw) < L(w), the hypothesis of the induction yields

= ! = = = i
x = x' and swi, = W, and therefore Wi sW, = W_ (since

s € Xt =X),

Prbposition 9-1. For any x € CX, the subgroup WX is

the isotropy subgroup of W at x.

Proof. Since CX is contained in /ﬂ\ HS, wx = x for
’ seX

any w in Wi. Conversely, if wx = x, then wCXf”\CX,+ .

From The Main Lemma, we get w ¢ Wy .

Proposition 9-2. If wx ¢ C for some x in C, then

X = WX,

Proof. There exist X and X' (X, X' C 8) such that

X €~Cx and wx € QX,. Since wat”\CX, containg wx, we get

i

X X! énd W € WX by the Main Lemma. Hence wx = X by

Proposition 9-1.

§10. The Range Q of a Coxeter Group.

We denote by‘ﬁ?;the collection of all subsets in WC
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of the form WCX for some w in W and some subset X of S.
Then WC is the disjoint union of the sets in 3. We
'denéte by @ the interior of WC and call it the range of the

Coxeter group W. Then clearly, @ D C and Q is stable under W.

Proposition 10-1. (Tits [8]). The subset WC is convex.

Hence the range Q is also convex.:

We shall prove the following stronger result.

© Lemms 10-1, For any x e WC, Conv(x,C) is contained

in the union of a finite number of sets of‘gg where Conv(x,C)

denotes the convex closure of {x,C}.

To prove this lemma, we will need ILemma 10-2. For
any x in WC - C, we define the subset S*¥ of § by
S* = {s € S|x ¢ SAS}. Since x & G, S* 4 ¢,

Lemma 10-2, Conv(x,C) C CVY [\ Conv(x,C M H,)].
' seS¥ I

Proof. Let y be a point in C. For any s € S, we

define @S(r) for r € [0,1] by

o (r) = <oy, ¥y + r(x - y)>.

Since y ¢ C, we have @S(O) = <&y ,¥y> 2> 0. We define the

real number 6 by
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6 = sup{t ¢ [O,l]|¢s(t) > 0 for any s in sSt.

Since x & C, there exists an sy € 8% such that ¢, (6) = O

0
z=y+ 6(x~y). Then z is then in CMNH, and the segment

0
U

and @SO(l) < 0. Since @SO(l) < 0, we have x € SOAS . Take

&mv@,UFY%OL

Furthermore we have seen that x is in SOAS s Which completes
' 0

{y + r(x - y)lr e [0,1]} is contained in T

the proof of Lemma 10-2.

Proof of Lemma 10-1. Assume x to be contained in wC.
We shall prove this lemma by induction on ﬂ(w).-

(i). When £(w) = O, the lemma is trivial.

(i1) We assumé £(w) > 0 and that the lemma is valid
for points in w'C with £(w') < £(w). Since the lemma is
trivial for x € G, we may assume x ¢ G. Now for any s € S
we have Conv(x, CMH,) = s-Conv(sx, EY”\HS)(: s- Conv(sx, C).
From Lemma 8-2, we obtain £(sw) = £(w) - 1 for any s ¢ S*.
Therefore, by the assumption, Conv(sx, C) (in particular

Conv(x, C/Hy)) is contained in a finite number of sets of

. Then Lemms 10-1 follows from Lemma 10-2.

Proposition 10-1. For any X € Q,'thgre exists an open

cone V in Q containing x. Furthermore we can take as V the

interior of the union of a finite number of sets in.??.
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Proof, Choose a y € C. Since { is open, there
exists a positive number ¢ such that y + (1 + €)(x - y) € Q.
Then we can take as V the interior of Conv(z, C). The last

assertion follows immediately from Lemma 10-1.

§11. Properties of The Range 1.

Lemma 11-1. TLet X be a subset of S such that Wy is
finite. Then we have Wy (/\ Ay) _ gx.
: seX
Proof. Define L by
L= H.MHEH,.
S+t s t
s,tes

and set M = f“\ AS. For any x e M- MM L, MU sM is
seX
a neighborhood of x for some s € X. Hence the boundary

of WM is contained in W, L. Since W, 1s finite, the set

X X X
WXL has codimension 2. Therefore WXM must be E*,

Theorem 1ll1-1, The following three conditions are

equivalent:

(a) CXC Q’
(b) Cy rm o ¢
(¢) Wy is finite.
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Proof. (b) = (F:)° We choose x € Cy M and fix -
it once and for all. ILet w be any e;ement in'wx. Since
i € 6; we have.wx € wC. On the other hahd, by Proposition
9-1, we have wx = x. Therefore wC (U + ¢ for any open
neighborhood of x. - By Proposition'lO—l, there exists a

cone V(C £ such that x € V, which is. the interior of the

_union of a finite number of sets {v Cy} of 5, i.e.

V=Uwv ¢,. Since WwC NV £ ¢, we have wC My Cy + ¢ for
YN Y o - ,.O 0

some vy € W. From the Main Lemma, we have YO = ¢ and w = Voo
Since the index set of v.is finite, we have proved that WX
is finite,

(c) => (a). Set M = {A\ A, and N = /ﬁ\ A, and take
‘ ‘ seX s%X

X € CX. Clearly x e [ﬂ\ AS. Therefore N is a neighborhood
s¢X

of x. Since WX is finite and WX is the isotropy group of

W at x, /ﬁ\' wN is also a neighborhood of x. Since E¥* = WXM
weW. v
X R

by Lemma 11-1, for any Yo € /ﬂ\ wN there exists a W e'WX
weW
X

such that Yo € WoM. On the other hand, Yo € WoN, so that

Vo e wNNwM=w (NE)Nw.([)E)=wT0. Thus
o ¢ W'l 'YWy 'Ly s ol 4 % 0

X € (ﬂ\ wN C WC., Therefore x is an interior point of WG,
weW
X

i.e. CX(: Q.
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We denote by}?i.the sub-~collection of‘g; consisting

of the sets WCX for which WX is finite.

Corollary 11-1. The range Q is the disjoint union

of the sets in j%b.

Corollary 11-2. For any X € §, we can take as an open

neighborhood of x in  the union of a finite number of sets
in ﬁo'

Proof. This is immediate by Theorem 11-1 and Proposition

10-1.

»Theorem 11-2., W acts properly on the range . In

. particular W is a discrete subgroup of GL(E*).

Let x and y be two points in @, And let Vo (resp. Vy)
be an opne neighborhood of x (resp. y), as in Corollary 11-2.
We also assume V. (resp. Vy) is of the form S‘ﬁ/v Cy (resp.

. | - 2

U 1 Cy). We have only to show that the set
(VPR :

{w e WlwV, NV, % ¢} is finite. In fact, this set is
containéd in the finite union of the sets

{w e WIw(v-CX)rhi(u-Cy) % ¢ }, where v and p (resp. X and Y)
range over the finite subset of W (resp.\sgd). By the Main

Lemma,, W(v»Cx)r“\uooy + ¢ implies wv W = H'Wx. Hence we have
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W e uWXv—l. Since uWXv—l is finite, the set

{w e Wlw(vCX)r”\uCY + ¢} is finite, and so is the set
{w ¢ wlwvxrjlvy + ¢}

Let PE*Abe the real projective space associated with
the real vector space E*. We denote by q:E¥ - {0} — PE*
the natural projection from E* -~ {0} onto PE*. Then GL(E*)
operates naturally on PE* and g is an equivalent mapping.
We denote by PQ the image in PE* of § ~ (0).  Then W also
acts oﬁ PR. The following is obvioﬁs from the proof of

Theorem 11-2,

Corollary 11-3. W acts properly on PQ.

Theorem 11-3, The following three conditions are

equivalent:

(a) the quotient space W\PQ is compact,

(b) T - {0} is contained in 0,

(c) for any X<¥ S, Wy is finite.

Proof. We have already shown that (b) and (c) are

equivalent. Now we shall prove that (b) implies (a). 1In

fact, q(C - {0}) is clearly compact in PE¥*. Condition (v)
implies q(C - {0}) C q(?) and therefore W - a(C - {0}) C q(n).
On the other hand W + q(C - {0}) D q(WC - {0}) D q() and
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hence W « q(C -~ {0}) = q(Q).‘ This means that W q(Q) is
compact. Next we shall prove that (a) implies (b). In
fact, since W\g(Q) is compact and since q{) is locally
compact, there exists.a éompact set K in g(f) such that
WK = q(Q). Now we know that for any point x e Q there
exists a cone Vi, which is a neighborhood of x such that
the set {w ¢ w]w'dmvx + ¢} is finite (see the proof of
Theorem 11-2). It is easy to see the set

Wy = {wewlwg(TNQ) K+ ¢} is finite. Since

1

wKMN q(CMQ) + ¢ implies w ¢ W, we see that

a(CM Q) C W'K. (Here we note that WK = q(R).) Since

Wklk is compact in q(Q) and g(C M Q) is closed invq(Q),
g(CMQ) is also closed in PE*, Since C/MQ is a cone,

and since a(CMQ) is closed, CMQ is closed in E% - {o}.
Since C is in @YA)Q, the closure of C in E* - {0} is conﬁained

in M Q. Hence we have C - {0} C Q.

§12. Non Canonical Representations.

: Leb?ﬂ)=f{wgs} be a Coxeter system., ILet A ='(Ast) be

a square matrix with indices in S such that

(L) A y > 0 for any pair (s,t),
A

(2)

ot Mg = 1 for any pair (s,t).
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We set aA~ = -\, COS8 —— for any pair (s,t) and define
_ st st Pt ,
' A

a family of vectors eg € E*¥ by the conditions <et,e§> = agt

for any t € S.. For each s € S, we define an endomorphism

Sp of E by
= x - 2<x,e > e £ E
sp(x) = x - 2<x,e, e or any x € E.
. A _ A m o .
Slnge <es,es> = ?ss = - cos 5;;-— 1, the map sy is a

reflection for any s € S,

pst
Lemma 12-1, For any s,t € S, (s t_)

AR

= 1 provided
Pgp < %

Proof. .We show that there exists a 6 in GL(E*) such
that

(1) e(E,MH)CH MNH,
(2) 8) = 6" 1s6 moa (H, MH),

(3) t, = 6 7t0 mod (H, Ny

In fact, let {el}  q DPe the dual basis of E* for the

canonical basis {es} of E. With respect to this dual

S€S
basis, s (resp. t) has the following matrix;

é: | /-1 Y




: 0
#1 T
- We define 6 ¢ GL(E¥) by the matrix
ff J)TSI 0
] | 0
] ':st
E 0 T
) Then )
-1 0
~-1
6 “s6 = 0
_Exstast 1
‘. #ll I

Hence 6 1s0 = sA modulo (HSI”\H%) and the same holds for
6~1t6. Since both s, and t, are the identity on Hy M H,
the order of 8p tA is egual to that of st. Thus Lemms 12-1

follows from Lemma 6-1.

Corollary 12-1. The mapping s 8, € GL(E*) defines

a representation p, of W.




Therefore W operates on E* and the action of w e W .

on E¥ will be denoted by w,. Since
7T = = =
cos 5§Z = 0 for Pyt 2 and Xss 1,

the representation Wf«—?'wA is determined by the restriction
of A to pairs (s,t) € S X S such that Pgy > 2. This
restriction can be regarded as 1 cocycle on the graph of ?ﬁo

with values in [R7.

Lemmg 12-2. For any w € Weo 41 (s,t € S, s + t) either
. R 2 T

, /«\(1) wy (A rjAt) C A and f(sw) = £(w) + 1,

or
(2) wy(a,MAa, Csy A and f(sw) = £(w) - 1.

Proof. Let 6 be an element of GL(E*) defined in

the proof of Lemma 12-1., Since we have

It

. — 1
sy ® ~s6 mod HS{j H ,

-1
t e tG‘mod Hslh\Hf,_

1l

A N

we have, for any w € W{S £}?
2

-1 .
w, = 6 “w6 mod HSﬂHt.
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Since 6 leaves stable AS and At’ we get
-1
Wy (Ag M Ag) C o7 w(a M Ag) + Hg M H

We know by Lemma 8-1 that either (1) wy(AgMAy) C 6 1A  + H_

. -1
and £(sw) = £L(w) +.1, or else (2) WA(AS MAL) C 677 (sA,) + Hy
- . - = T

and £(sw) = £(w) -~ 1. Now 6 Ag+ Hy = A, + H = A  and
_1 -1 _ _ -
0 7 (shg) + Hg = 077(-Ag) + Hy = -A_ + H, = -A_ = sA_ and the

lemma is proved,

Similarly we can prove aﬁ analogue of Main Lemma in §9
by defining Q, as the interior of WAE'and replacing Q and p
by QA and Pa respectively. The results on Q obtained so far
depend basically only on Main Lémma. Since the analogue of
Main Lemmg holds.for QA and Pp» QA has analogous properties

as . In particular, QA is a convex cone.

$13. Properties of the Representation Py

Assume now the Coxeter systanzyo= {W,s} is irreducible
A
and det(ast).+ 0.

Lemma 13-1. (E.B, Vinberg - Katz, [10]). If there

exists a non-zero symmetric bilinear form invariant under

. A A A _ A A A
the representation P> then Agt By Bpg T 8pg @

for
sr art —_—

any s, t, r € 8.
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Proof. ILet ¢ be a bilinear form invariant by Py

Then we have o(s, eg, ) eﬁ) = @(eg, e%). On the other
hand, we have ¢(s, eg, ) e‘g) = cp(—eé, e% - Ea{_}s e’g) =

A A A A A A A A
~¢(es, et) + Qats @(es, es). Therefore C @(es, es) =

»@(eg, e@). From the irreducibility and from det(agt) + 0,
it follows that m(eé, eg) + 0 for any s € S. Since ¢ is

symmetric, we have
A A A A A A , A A A A

and this proves the lemms.

e A A A A A A
Now the conditions 8gt Bty Bgp = Bpg 8gp B (S,t,7 € 8)

are equivalent to

(13-1) (Mgt My A = Ao Ao X ) cos =P cos —T— cos T =
st "tr “rs ts Tsr Trt/ Pt Py Prg

Remark. Since any finite linear group leagves a‘symmetric
bilinear form invariant, if w is finite, the relations (13-1)
hold for any A = (Ag¢). Since we can choose At (S5t € 8) such .E

that (kstAxtr'xrt = Mg Agp Mpt) + 0 for any {s,t,r} C s,

cos =~ cos =~ cos —I— = 0 holds for any {s,t,r} C S. This
Pat Piy Prs

is equivalent to saying that the graph of a finite Coxeter

group contains no triangle. More generally:

Propogition 13-1. If W is finite, the graph of the
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Coxeter group contains no cycle,

o

AN

Proof. Suppose there exists 81500458 such that

m
Ps o >2 (i=1,...,m) and p, > 2. Ve may assume
18141 S
m>3andps.s.=2ifli—j| + 1 and set x = z:e .
1 J m
Then we have B(x,x) = ZE: B(e p ) + 2‘257 B(e p ),
: , =1 i< ®1 J ,
and since B(e_ , e ) < & , we have B(x,x) < m + 2(m-1) (-5) +|
Si° Siv1’ T a &

2(m=1) < 0., Since W is finite, by Theorem T7-1 (Witﬁ), B
is positive definite.

Remark 13-1. If the graph of a Coxeter groﬁp contains
no cycle, the linear fepresentation Pp is similar to the
dual canonical representation. More precisely, Pp is similar
to the dual canonical representation p* if and only if.A,
regarded as a 1 cocycle over the graph of Z%D, is cohomologous

to O,

- Propositior 13-2. The representation pAviS irreducible,
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Proof. Let ¥ be an invariant subspace. If F
contains some eg, then F is equal to E*, because the
graph is irreducible and det(aét) + 0. Now suppose
F 4+ {0}. Then for anj x € F {0} and s € S, we have
F S X - X = 2<es,x>eg. There exlsts some s € S such

that <es,x> + 0. Then eg is in F, which implies F = E¥*,

Proposition 13-3. If W is_infinite, the cone Q,

contains no straight line.

Proof. We define F by F = {v ¢ E*¥| x € E*, x + ov & Q
for all 6 e R'}. F is an invariant subspace and, by
Proposition 13-2, it is either {0} or E¥. If F = E¥, we

A
of Theorem 11-1,

have {, = E*¥ and in this case W 1s finite by an analogue

§14%. An Example (cf. [10]).

Let S. be a set consisting of three elements s,t and r.

0
Let PO be the following Coxeter matric with indices in SO;-'
s 1Y r
1 3 3
Po= 13 1 y
3 4 1




[

=
e
<
+
o]
=
(]
g
B
—
O
[€2]
=
[a—
I
Q.
P
g
]
R
0
>
w0
&~
0]
+
0]
ol
O
O
]
8y
O
o]
ot
w0
o
O
Q
O]
=

By = (agy) is as follows:

0]

We take as A the following matrix AO’

o l_ﬁm41*

—l ﬁw

Then the matrix Bg'= (aﬁt) is as follows,

Then det By = -
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Anvariant symmetric bilinear form under W, (see Lemma 13-1).

By Proposition 13-2, Q, contains no straight line.
0 .

We define the subgroup G(Q, ) of GL(E*) by (2, )
| 0 0
= {a ¢ GL(E*)Ia(KlAO) = QAO}. Then G(QAO) is not transitive

on €, . In fact it is known that & homogeneous cone in 533
0

containing no straight line is affinely equivalent to one of

the follow1ng two homogeneous cones:

|

(1) 9= {&,xpx%3) ¢ El3|x > 05 x5 >0, x5 >0},

(2) Q= ﬂ?l,xg,XB) € R 1x1 + xg -~ x3 < O}:

Now suppose G(Q, ) is transitive on Q, . Since W (C G(Q, ))
bo’ 0 bo

_ 0
has no invariant symmetric bilinear form, QA must be
’ 0
simplicial. When QA is simplicial, it is easy to see that
0

any element of finite order in G(QA ) has order 2 or 3. But
(6] .

this is impossible since the order of tr is 4. Using homothetie%"

it is now possible to define a discrete subgroup in G(QA )
0
containing WA such that W \\ is compact: tThe convex

QAO is "quasihomogeneous, but not homogeneous (cf. [1], p.239).
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Chapter III

Hyperbolic Coxeter Groups

For thislchaptér a general referénce is Bourbaki [4].
In this chapter we denote‘tmrzi? = {W,S} a Coxeter system
and consider the canonical dual representation of W in
E* = (iRF)*. Since the representation is faithful we
identify W Wwith a-subgroup of GL(E*). For notations, c.f.
Chapter I, §7 - §10.

§15. Some Preliminsries.

Lemme. 15-1., Let G be a subgroup of GL(E¥*) such that

G is unimodular and G contains W. Iet D be a half-line

contained in C and set Gy = {g ¢ Glg(D) = D}. ;g_W\Q has

a finite invariant measure, then GD.is compact.

Proof'. Denote by rb the Haar measure of G and define.

an open subset U of G by {s e G|s(D) C ¢}. Then we have
-

U D Gy and UGy = U. The canonical projection m:G - W\G is

D
injective on U. In fact, suppose there exists w € W such
that wU N\ U £ ¢. Take s € U such that ws € U. Then

ws(D) C €, which implies CNwC + ¢. Then we have w = e

by Theorem 8-1 and this shdws that m 1s injective on U.

In particular, p(U) < «. Choose a compact neighborhood K of e
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in U. We shall now show that there exists a finite
subéet T in GD such that for any g € GD we have
Kg (VKT + ¢. In fact, take any subset {g;} ;o7 such that
{ng}jeJ are disjoint. Then the index set J is finite, since
ng(: UG, C U, p(Kg) = u(K) and 0 < u(K) < u(U) < = From
this observation, we easgsily see the existence of such a set
T." Then Gy C K 'KT and since K KT is compact, and G 1s
closed in GL(E*), Gy 1s also compact.

From now on we assume that the'canonicai bilinear form
B is non-degenerate and identify E with E* through B. Then |
B may be considered ag a bilinear form on E*, also denoted
by B. Since W leaves B invariant, W can be considered as

the discrete subgroup of the orthogonal group O(B).

Theorem 15+1. If the total volume u(W\O(B)) is finite,

the signature of the symmetric bilinear form B is either

| (n,0) or (n-1, 1).

Proof. For any x € C, we denote by HK the hyperplane
{y € E¥|B(x,y) = 0}. Denote by D the halfline $fo. Applying
Lemﬁa 15-1 té the éase G = 0(B), we see that GD isAcompact, |
leaves invariant the symmetric bilinear form Bx - the
restfiction of B to qu Since GD is compact, tThe bilinear
form B, must be definite. In particular, B(x,x) + O for

any x € C. It suffices to show that Bx is positive definite.

g
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Suppose it is negative definite. Then B(x,x) would be
positive, since otherwise, the symmetric bilinear form
B would be negétive definite., And this is impossible
since B(eg, eg) = 1 for any s € S. Therefore the

signature of B is (1, n-1). Denote by V the set

{y ¢ E¥|B(y,y) > O}. V has two connected components.

Since we have B(eg, eg) = 1, eg ig in V for any s € S.
Moreover, if s and t are distinct, eg and-eE_cannot be

in the same connected component of V, since B(eg, e%) < 0.
Therefore S consists of just two elements, But if this is
the case, the canonical bilinear form B is positive definite
and we get a contradiction. Hence BX is positive definite

(for any x € C) and the theorem follows.

§16. Hyperbolic Coxeter Groups.

A Coxeter system {W,S} is called hyperbolic if the

canonical bilinear form B has signature (n-1, 1) and
B(x,x) < O for any x € C. Our aim is to characterize the
graphs of hyperbolic Coxeter groups. From nOowWw On we agsume
{W,8} to be a hyperbolic Coxeter group.

Denote V by the set {y € EX|B(y,y) < 0}. Then V
contains C and V consists of two connected components, which

we dehote by V4 and V-, and aésume V+ ) C. Then W leaves V+




invariant. In fact, for any s € S, we have either

By :
HBOV++¢orH ¢) = 1. This

. B
3 erﬁjV; + ¢ since B(es, e

s , S .
means that s has a fixed point either on V; or on V.. On

the other hand, since W leaves B invariant, we have either
s(V+) = V& or s(V+) = V#. Therefore s(V+) = V+. Denote
by g the canonical projection from E¥* - {0} onto the
projeéti@% space FE* agssociated with E*. The orthogonal
group acts on PE* and q(V+) is stable under the action of

0(B).

Lemma, 16~-1. O(B) acts pfoperly on q(V+).

Proof. From the hyperbolicity, BX is positive definite

for any'x in V+. Then the isotropy group of G at any point
in q(V+) is compact.
Now we wish to show that V+ = {i. For that purpose we

now prove several lemmas,

Lemma 16-2. V+ is contained in the simplical cone
B
s}seS’

l.6, if x = 2 g e]: is in V, then

generated by {-e
- ’ seS

XS < 0 for all s.

. !
Proof, We denote by {eS}SeS the basis of E* dual to
! . . -
the basis {es}seS' Then eS is contained in C and
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Ay = B(x,eé). Since C is contained in V., we have

B(x,eé) < 0. Hence A, < O for any s € 8.
Lemma, 16-3. Wx N C + 0 for any x € V.

Froof. Iet f be the linear form on E* such that
f(eB) = 1 for any s € S. Then it is clear from Lemna,
16—2 that f(x) < O for any x ¢ V For x € V s we denote
by w  an element in W such that we have f(wx) < f(wx) for
Aall W € W. The existence of sqch an element W, will be
proved by the next lemma. Then we have WX € C. 1In fact,

put WX = 3 g eé. We have only to show that Hq is non

negative for each s € S. Now f(tw ‘x) - f(w,x) = f(tw, x - wxél
f(—EB(et, W -x)e ) = (- 2, t) = -2Q,. From our assumption

on w,, we have ke 2 O,

Lemma, 16-4, Tet f be the function defined in the proof

of Lemma 16-3. Then there exists a W in W such that

f(w, x) > f(wex) for all w ¢ W.

Proof., We deflne a real—valued function ® on V‘ by v
o(y) = f(y) /B(y v) (y e v, ). @ is homogeneous and therefore;;
there exists & unique function ¢ from q(V;) onto ]-«,0] such |
that & = ¢ o»q. It is easy to check that ¢ is a proper
mapping. In particular the set {¢ e a(vV.)le(e) > M) is

compact for any M inleﬂ. Since G acts properly on q(V;)




T

. (Lemma 16-1) and since W is discrete (Theorem 11-2),
Wq(x)_is discrete., Therefore there exists a W, € W such
that P (v, q(x))‘z ¢(wg(x)) for any w € W, since ® is proper.
Since B is invariant under W, the above implies f(wxx) >

f(wx) for any w € W,

Propogition 16-1, v, = Q.

Proof., Since Q C WG «JC:V;), and WV, = V_, we see that
QCWeC WV, = ¥, and hence @C V,. On the other hand, Lema

16~3 shows that V;_C:Wﬁ'and hence @ = V_.

§17. Characterization of Hyperbolic Coxeter Groups.

Theorem 17-1. ILet B be the canonical symmetric bilinear

form of a hyperbolic Coxeter group and O(B) the orthogonal

group of B. Then W\p(B) has finite measure.

Proof. Since 0(B) acts properly on g(R), the finiteness

of the measure of'W\p(B) is equivalent to that of the measure

of W\g(9)5 Now we~choose a basis.{xo,...,xn_l} of E¥*
2

2 2 '
+ X +.l.+ Xn

(n = dim E*) such that B is of form: B(x:x) = -x4 1

The (n-1) form

C A
§(~l)l x* Axg Ao e AdX A Lo Adx

: n
(-B(xx))2




induces an O(B) invariant volume element on q(Q) (see
Proposition 16-1). Since q(Q) = Wq(CTMQ), it is sufficient
to show that the measure of q(C/() Q) is finite. Consider the

hyperplane H = {xo = 1} and the ihtegral

dX ® 0 0 dX K
j‘ 1 n-1 n ‘
i e The finiteness of this integral
QQH {1—(x§+...+x§_l)}2 - '

implies the finiteness of the measure of a(CMN Q). This
integral is finite, provided n > 2, and n is certainly

greater than 2 for hyperbolic Coxeter groups.

Theorem 17-2. An,irredﬁcible Coxeter group is

hyperbolic if and only if the following two conditions are

verified.

(a) for any s e S, the symmetric matrix (-cos ﬁfgar,tes—s

is positive definite,

(b) B is non-degenerate and not positive definite.

Proof. We first prove the necessity of the conditions
() and (b). (b) is trivial from the definition of hyperbolic
groups . Since B(xwx) < 0 for any.x e C, we have B(eé,eé) S‘O
for any s in 8. Define L, (s € 8) by {x e B¥|B(e},x) = o} .
Then LS contains e% for all t € S-s. Since the signature of

B is (n-1, 1), B i1s positive on L. The matrix of the
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=)

ﬁnz'r,teS—s’ which proves
r

restriction of B on L, is (-cos

(). Next we show the sufficiency of the conditions,

There exists an x e E* such that B(x,x) < 0 by (b). Set

_ 57 B . _ B
X = £~ 8, e and define x  (resp. x_) by X, = ZMJ ag €
sesd . , - a >0
= - _B . B
(resp. x_ = ;§<6 as.es). Since B(es, et) <0 for any
S : S

s,t (s + t), we have B(x,, x_) > 0. Hence B(x,x) > B(x ,x, ) +

L)
B(x ,x ). Therefore we may assume B(x,,x,) < O, replacing

x by -x if necessary. ILet V={x|B(x.x) < 0}. Then

X, € Vﬁhﬁ(:;; gﬁ eg). Let V, be the connected component

of V such that VO(W (5¥ R e ) + 0. From (a), we see that

gy

VoML, = ¢ for any s € S. In particular, we have V. C 2.,.-,«1 7?2:,’-

0 s . 0 s€S

1 since IL_ is on the boundary of ) Rk e for any s € S. Now
S Lc, S - .

s€eS
we show that the signeture of Bis (n-1, 1). Fix an element
y in VO. Sﬁpposevthere exlsts a two dimensionellsubspace, say
[Rx+ Ry (y € E¥) on which B < 0. Then (£x +& ) - {O}CVV’
and this is a contradlctlon, since VO is contained in the cone
5 ﬂ% es. Therefore B has the signature (n-1, 1). Next we
prove that C is contained in V. Since the signature of B is

(n-1, 1) and B is positive on L,, we have B(eé,eé) < 0. Hence

el € V, which implies T(C V. Therefore we have ¢ C V.
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A hyperbolic Coxeter group 1s called a compact Coxeter

group if the quotient W\\O(B) is compact.

Theorem 17-3. A Coxeter group is compact if and only

if. . the following two conditions are satisfied.

co i ;
(a) for any s € S, the matrix (-cos ?E;)r;tes—s is

positive definite,

(b) B is non-degenerate and not positive.

Proof. Proposition 16-1 and Lemma 16-1 show that 0(B)
acts properly on q(Q). Hence the compactness of W\ O(B) is
equivalent to that of W‘\q(ﬂ). The theorem therefore follows

from Theorem 17-2, Theorem 11-3 and Theorem 17-1.

§18. The List of Hyperbolic Coxeter Groups.

Lemma 18-1., If a Coxeter matrix (p,,) is_irreducible

is

and_positive, then for any s e S, the matrix (prt)r,t€S—s is

positive definite.

Proof. Set N = {x ¢ EIB(X,E) = 0}, ©Note that N is also ;“
defined by N = {x € E|B(x,x) = 0}. Tet x be an element in

Since B(et,er) <0 (¢ + r);

NN {e! = 0} and let x = Z:. a, e,.
5. | tds ¢ ¢

we have 0 = B(x'x) = Z,af B(ey,ey) + gzﬁ a; a, B(e,,e.)
” |

> ziatl2 B(eysey) + N la ] la.l B(ey.e.) = B(Zlaley, zlatlet)¢g
> 0. Therefore |x| = Zlatlet is also in Nl”\{eé = 0}. Set
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T

It

{t € Slat + 0}. Then for any r in 8 - T, we have

t’er) =
for any t € T, r ¢ S -~ T. From the irreducibility we have

0 = B(le,er) = Z!atIB(et,er), which shows that B(e

either T = ¢ or T = S, Since s is in S - T, we have T = ¢,

1

i.e. Ix[ = 0 and hencebx = 0, This completes the proof.

Proposition 18-1. (Coxeter, cf. [5], [11]). The

following is the list of the graphs* of all irreducible

positive definite Coxeter matrices.

A OO0 O——0 (n > 2)
D, o——0——0 ... o<:::: (n > 3)
'BI1 ot o0 .. o— o (n > 2) -
G o~£i~o |
2

Fq -0 o) 4 o —0
E6 oO0——O0—-90 O )

o
E7 00 o) 0 O 3)

o]
E8 o O .I O~ O 3 ©

¢

*¥ The number above a l-simplex vsvt'is | Theﬁ/pst is 3,
we omit it. :
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‘H3 o——~—o~§L—o
H)-l- C. O O 5 O
D P o | | pt3
P pf6

Proof. We will omit the proof of this proposition.

Using Lemma 18-1, we get:

Proposition 18-2. The following is the 1list of graphs

of all irreducible (degenerate) positive Coxeter matrix. ([lll);%

33:92
o
o
|

%/ 0__0—4 ‘ o /O
n ) [ BN BN J O\
Y . | 4
n OO0 s e Q-——0
~ o
D, O;::>o——~—o O ves o<::::
Do o—:i—o
~ 6
Gy O—— OO
~ _ 4
F)'l- (o] —O O O
E% o o 5 o) o)
5
)
(o ’ ‘
O———O———0 o) o-
7 I ©
T
¢ 8 o © T 5) o- o © —0

°
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Using Theorem 17-2 and 17-3, the graphs of irreducible
hyperbolic Coxeter groups can be constructed from the graphs

of positive Coxeter matrices. It appears that there is no

irreducible compact hyperbolic Coxeter group of rank > 6 and

there is no irreducible hypéfbolic Coxeter group of rank > 10.

(Lenner [6], Vinberg [9]).

Theorem 18-1. (Lanner [6]). The graphs of irreducible

compact hyperbolic Coxeter groups are the following:

rank 3

P o 9 5 p=23 6 < qc< o

or 3<p< ® b <gg =
p q

P P+C1+I'>9. P, 4, r < *®
rank 4 ,

o————o—;L~o————o o~}+ o o 2 0

o > o o 2) o
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_ rank 5
(o) O O n59
o 4 To! o) o 5 0
5 5

&

////3
:
4

A

Theorem 18-2., The graphs of irreducible non-compact

hyperbolic Coxeter groups are the following (*).

rank 3
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rank 4

O

petepegopars

T A
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rank 5

©




rank 6

-
4
g
s
&~
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rank 8

o)

rank 9

O—0
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rank 10 | : ‘
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Chapter IV

Arithmetic Hyperbolic Coxeter Groups

§19. Preliminaries from the Algebraic Geometry.

- .Let X be an algebraic variety in ¢? defined over an
algebraic number field k., We dencte by A2 (X) the ideal
of X in €[X,...,X 1. We put @@, (X) = R (X) N k[X .o X 1.
Then (JL(X) is generated by C@k(X). Let w'be.én.isomorphism
of k into ¢ and denote by X the affine algebraic variety
defined by the ideal ®(,(X) = {®plp e (L, (X)}. The variety
PX is then defined over the field o(k).
For any algebraic number‘field I, we denote by XL the set
of all I-rational points of X, i.e. Xy = X NI, |
Let X (reép. Y) be an algebraic variefy.in ¢ (resp. ™)
defined over an algebraic number field k. Let f be an every-
where defined‘rational map from X into Y, defined over a field
L which is a Galois extension of k. The graph gr(f) of the
mgp f is an affine,algebraic variety in Cn+m defined over L.
For any element ¢ in the Galois group Gal(L/k), we denote by .
9 theveverywhere defined rational map from X (= %X) into
Y (= °Y) whose graph is given by 9%r.(f). The map °f is also

defined over L.

For any I-rational point x in X, we have c(f(x)) = (Gf)(GX),
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where O(xl,...,xn) = (Oxl,...,cxn).' The rational map f is

defined over k if and only if £ = °f for all ¢ in Gal(L/k).

Lemma 19-1. Let X, Y and Z be algebraic varieties defined |

over an algebraic number field k. And let f:X - Y and g:¥ —» Z

be everywhere defined}rational maps defined over a field L

which is Galois over k. Then for'any o € Gal(L/k), we have

G(gof) - O'goo‘f.

Iet G be an algebraic subgroup in GL(n,C) defined over
a totally real number field k. We denote by © the ring of the

integers of k. We define the subgroup q@yof G by

q€V= {g = (g%) € G|g§ €e® 1< J< n; (det g)"l e®}. A sub-

group I' of G is, by the definition, commensurable with G

R (ot
if Ffﬁiq@’is of finite index in both T and %9} A subgroup T
of G is called an arithmetic subgroup 1f the following

R
conditions are satisfied;

(1) for any isomorphism o of kinto R which is not

the identity, (°G) is compact;

®

(2) T is commensurable with G.

Q
Example 19-1. Iet G be an algebraic matrix group in
GL(n, ) defined over . Then G, (Z =o(Q) 1is ‘
arithmetic. - | | |

‘Let G be an algebraic matrix group in GL(n, € ) defined
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\

over a totally real number field k. If I is an arithmetic

subgroup of GTR s then I' is discrete in G . Furthermore,

R

according to Borel and Harish-Chandra [4], G is an irreducible__v;

semi~simple group, the quotient F\\Gg_ is of finite volume.
Let %ﬁ'be a Lie group. A subgroup W of 2?’is called an
arithmetic subgrbup of Q?’if the following conditions are
satisfied:
(1) there exists a totally real algebraic number field
K; | |
(2) there exists an algebraic matrix group G definéd
over k;
(3) there exists an isomorphism ¢ of & onto»Gﬁz such

that ¢ (W) is an arithmetic subgroup of G -

For any algebraic matrix group G, we denote by Ad (G) the
adjoint group of G and by Aut(G) the group of all automorphisms i

of G; Ad(G) and Aut(G) are algebraic linear groups.

§20. Arithmetic Hyperbolic Coxeter Groups.

Let2ﬂ3=={W,X} be a hyperbblic Coxeter group and B its
canonical symmetric bilinear form regarded as a form on_the
space (R °)* = E¥, We denote by O(B) and SO(B) the
orthogonal group and the special orthogonal group of B

respéctively. Both are subgroups of GL(E). We have shown
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(Cor. 8.1) that W is regarded as a discrete subgroup of
0(B) by means of the dual canonical representation.

Iet T = Ad(W) be the image of W under the adjoint
representation of O(B) and define T+ by T' = Fr”\Ad(SO(B)).‘
The following criterion for F+ to be én arifhmetic

subgroup of Ad(SO(B)) is a particular case of a criterion

proved by Vinberg ([9]).

. Theorem 20-1. TLet 23°= {W,S} be a hyperbolic Coxeter

group. TLet p., be the order of st for any (s,t) e SX S

gnd let a = ~ cos (ﬂ/pst) if pyy < *and ag = -1 if

Pyt = ©, Let k be the field generated over GQ by the elements

Of the form a, , 8y 4 ... 8. o 8nd let ¥ be the field
152 8283 m®1 <

generated over QQ by the elements ast(s,t € S).

Then T+ is an arithmetic subgroup of Ad(SO(B)) if and

only if, for any isomorphism T of kK into R which is not

identity on k, the matrix (r(ag.)) positive definite.

Lemma 20-1. The volume of'r+\\Ad(so(B)) if finite.

Proof. Since the index of SO(B) in N(B) is finite,

this lemma follows immediately from Theorem 17-1.

-Lemma, 20-2. There exists an algebraic number field

k.

o and_a basis {ui} of E* such that
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(1) B(ui,uj) c

(2) el e]:. (s € 8) are in Vi = 2 kg ovou,

(For the definition of ef, cf. §8).

From now on we fix such a field ko and a','basis
{ui} as in Lemma 20-2, We denote by Bg the restriction

of B onto V, and by O(BQ ) the orthogonal group defined
0

by BQ and by SO(BQ } the special orthogonal group .
(Remark: O(Bg ) C GL(n, C ) and SO(BQ ) is the identity
component of O(BQ ). We may identify O(BQ )!R with O(B)
and (Ad SO(Bg ))p with Ad(S0(B)).)

Lemma 20-3.
(a) wWC 0(Bg )ko’

(®) T, C Ad(S_O(BQ ))ko.

From now on we assume that F is an arlthmetlc sub—
group of Ad SO(B). Then there exists a totally real number
field k, an algebraic matrix group G defined over k and an

isomorphism ¢ from G_, onto Ad SO(B) such that cp‘—l(I“_,_) is

R
arithmetic in GIK .

Lemma 20-4. There exists an invariant subgroup Ty of

I, which is of finite index in T and is contained in ?(Gy).
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-1 . .. . . -1
Proof. Gg M@ ~(r,) is of finite index in ¢ (r,).

. - - =1 . ’ . . . ~1
Slnge‘G{p C Gy G Mo ~(T,) is of finite index in ¢ (r,)
i.e. ¢(GK)JA\T

N is of finite index in r,. Hence there exists
an invariant subgroup FO of T" which is of finite index in F+
and is contained in @(Gk)fﬁjf+. _
Since we identify Ad SO(B) with (Ad SO(Bg )%P , ¢ is:
R %

a map from G , onto (Ad SO(Bg . ¢ induces an

Dr
isomorphism of the algebraic group G onto the algebrailc
~group Ad(SO(Bg )) defined over some field L which is a

Galois extension of the field K generated by k and Kk,

Lemma 20-5. ¢ is defined over K.

Proof. It .suffices to prove that %p o mﬁl is the
identity for any o e Gal(L/K). Let u e Toe Then %u = u

because T’y 1s contained in (Ad SO(BQR ))ko. On the other

hand, since @fl(u) is contained in G,, we have G(m—l(u)) =
¢*l(u) and hence %o @_l(u) = u for any u € I'y. Since I,
is of finite index in T, the volume of Fo\ (Ad SO(Bg ) g
is finite by Lemma 20-1. By a theorem of Borel [2], FO is '
Zariski dense in (Ad SO(BQ))[R . Therefore % @—l is the
identity.

‘Now lét'L be a Galois extension of k containing K.

For each ¢ € Gal(L/k), let A = ¢ o G¢~l. By Lemma 20-5,
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A is an automorphism of Ad SO(BGQ.) defined over L.

Lemmg 20-6, {Ac} is a l-cocyle of the group
Gal(L/k) with values in (Aut(Ad SO(BQQ ))) g,

o g -1 e -1 ot ~1 _
Proof. We have A "A_= (p ¢ ") " (p'9 ~) =¢ ¢ = = A -

Lemmg 20-7. There exists a Galois extension Ly of

k containing K satisfying the following conditions;

- (1) there exists a l-cocyle {C_} (o € Gal(Ly/k)) with

values in (O(B Q )1
(2) A, = Inn(Ad C).
(3) ©,%2¢_" = 2 for any 2 in s C W.

Proof.,  There exists a Galois extension LO of k

containing K such that AD:(0(Bgy ))r — (Ad O(Bpn )); is
: Q /Ly Q Ly
surjective, For any v € I', the automorphism Inn(vy) of

Ad(SO(BG{)) is defined over Ly. Now we assert

1

AGO(ing(y))A; - Inn(v)

for any o € Gal(Ly/k). In fact, since @—l(Inn(y))@. Q"I(FO)
C o™ H(Tg) and ¢ *(Tg) C Gy, we have “(¢7H(Inn(y))e) = o™ Tnn(v)s
on PO. Since Q)is.Zariski~dense, this yields our assertion.
Next we shall show that the automorphism A, of Ad(SO(BGL))

is the restriction of an automorphism of Ad(O(BQQ)) defined
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over Ly. In fact, take any element s, € S C W and set

v = AdSO.

Then v is contained in (Ad O(BQ))L . We
. . . . O

denote by ET the "everywhere regular map of Ad(O(B )) onto
itself defined by the left multiplication by y. Then ﬁ,y
is defined over L and interchanges the irreducible

o -~
components of Ad(O(BQ )). Let Ad(SO(BQ )) and Ad (O(BQ ))
be the irreducible components of Ad(O(BQ )). We define

Ay on A (0(Bg)) by the formula
Ag(x) = (8, 8, %4, (x)

for any x € Ad (O(B&)). Then it is easy to check that
(i) A, is an automorphism of Ad(O(BQ)) defined over Lg,
s X5}
(i1) A A = A for any o, T € Gal(Ly, k).
Now we know that any automorphism of the algebraic
group Ad(O(BQ )) is an inner automorphism. Since Ad(O(BQ))
has no center, there exists a unique eiement 0_0 in
(Ad(O(B(a ))LO such that A _ = Inmm( a; ). Let C_Dbe an element
of (O(B(D\ )_)LO such that Ad(C ) = & . |

Now put u, = Inn(Ad(s)) for any s € S. We know that

o -1 _ o, ~1 _ : .
A (us)Acy = u  and hence C°s C =~ = is. Since Trace (s)
= Trace (%s), we have
o -1 _
(20-1) ¢ ¢ = s,




: o ~1., By _ _, By _ B . ~1 By _

Theiefore (Cc s C ées) = s(eg) = ies, i.e. es(cc eg) =
~1 B o ,~1 By _ o B
~C, €g. ‘Hence s (€, eg) =~ (C, eg). Thus
—1 , - ‘
Cy e? f €g eg (as =.il) for any s in S. Choose C_ such
that d;l e® = e® . Then ¢ % =C__. Then the assertion
S - S8g o1 oT

(3) follows from (20-1). We have thus proved Lemma 20-7.
From now on we fix the field Ly as in Lemma 20-7. The

following is well known (cf. J.P. Serre, Corps Locaux,

\

Hermann, p. 159).

Lemma 20-8. Iet GL(VO) be the group of automorphisms

qf the Ly-vector space Vy. Then Hl(Gal(LO/k), GL(VO)) = O.A

Since CJ(BQK)LO is contained in GL(VO)LO, there exists

an element o € GL(VO)L such that C = 0% 1 for any
O .
k

'Vk = LO'VO' We denote by Bk the restriction of B

o € Gal(Ly/k). We define a k-vector space V, by Vy = kea(Vy). -

Then LO

to Vk.

Lemma. 20-9. B, (V, |V, ) is contained in k.

Proof. For any x;y-e Vo B(x,y) is illml. Therefore
for any o € Gal(Lo/k), we have O(B(ax, ay)) = B(Gadx, Oacy)

- -1
= B(Ga-x, Ga-y) = B<Col ax, C; lay) = B(ax,ay), because Cy

is in (()(BQ%))LO. Therefore B(ax,ay) is in k.
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Denote by ()(Bk) the algebraic brthogpnal matrix group

defined by B Then O(Bk) is defined over k. There is a

k.
natural isomorphism 6 from () (BQ‘) onto 0 (B, ) defined over
-1
o

Ly, i.e. 6(x) = xa for any x € 0 (BQ).

Lemma 20-10. For any x € O(BQ)L » we have
‘ 0
°(0(B)) = o(1mn(g)x). |

1

o 1, o - o
Co X C0 o=

Proof. 9(6(x)) = O(oflxa) = Og7t %% = o

o ~1
Q(Cax Ca ). i

Lemmg 20-11, W is contained in (c7(Bk))k..

This follows immediately from (3) of Lemma 20-7.

Lemma, 20-12. The isomorphism y ¢ of G onto Ad(SO(B,))

is defined over k, where ¢ is the natural map induced by 0.

Proof. ®Since ¢Yo ¢ is defined over LO, it suffices to

1 w—%

For any w € Wrﬁ1Q(Gk), we have (%0)(w) = 6(Imn C,)(w). Hence

1l

show “(yo9) = y ¢ for any o € Gal(LO/k), i.e. 9op

w—loow = Inn(Ad‘CG) v = Int(acg), which shows that Gw#—l =
Int(Ad(aC )). On the other hand we have (@-Gw_l)(y) = Ao (vy)

Inn(Ad(CO)’y. Since T'y is dense, this yields mg@"l = w—% %.

Lemma 20-13. If p is an isomrophism of k into /R which

is not the identity, then LLBk is either positive.definitevor
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negative definite,

Proof. Since Ad(SO(Bk)) is 1somorph1c to G over k,

(HAd(SO(BK)))ﬂ{ is compact, which 1mp11es that (M O (Bk)%k/

is compact. Hence Bk must be either positive definite or

negative definite,

Lemma, 20-1%, For any s € S, there exists a real

number AS such that xseg is contained in V.

k.

Proof. Since R;Vk = E¥, there exists an x € Vk such

that B(x, e0) + 0. Since W is contained in ( 0 (B)),
” (Lemms, 20-11), s(x) - x = 2B(x+eD)el € V,.

We fix once and for all a %s for each s € S.
Lemma 20-15. TFor each s € S, kg is in k.

Proof., We know that B(Vk Vk) € k, and thus

- B B
Ag = B(A €55 es} e k.
Lemma 20-16. For any subset {s;,...,s } of S,
a a oo & is in k, where a = ~cos (n/p )
S P1f2 SpF3 L SpFy T T T 5i%5 1%
Proof. Since A_A B(e ) Is in K, Mg Ag Ay eee Ag A A
m—— 8"t 8, 85 8, S, Sy ¢
a T ees & is in k., From Lemma 20-15 it follows that
S8 s _s- . .
12 m-1
a ses O € k.
5182 Sm®1
iHL r~~ ' ]
Lemma 20-17. Let K = K({N\ },.q). For any isomorphism
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T gi.gfinto ¢ such that the restriction of 7 to k is not

the identity, (Tast) is a positive definite real symmetric

- matrix,
Proof. Iet B(a.eD, ael) = b ‘ (¢ k). Then we have
' s 8’ "Mt°t at .
T ' .
bst.z TAS Txt Tast. Since a = 1 for any s € S, we have

)2._ Since k is a totally real, TbSS is in R .

T _ T
b = ( As |
Hence ?%S is either real or purely imaginary. On the other
hand ("o .) is definite from the Lemma 20-13, hence all of
TKS (s € 8) are either real or purely imaginary according
T T ) . T, .
as (bg) >0 or ( bsﬁ) < 0. Then the matrix (‘ay,) is real

and definite, and since By = 1, T(ast) 1s positive definite.

Lemms 20-18, The field k is generated over () by

{a a vee 8. & }.
5185 858 Sy B

Proof. Denote by k' the field @Q({as g e 8y g 1)
172 "mT1
By Lemma 20-16, k' is a subfield of k. Suppose there exists
an element v in k such that v é_k'. Then there exists an
isomorphism T of k into ~ such that 7| k' is the ldentity
and 1v ¥ v. We can extend 1 to an isomornhism of k. By
Lemmg 20-17, T(ast) 1s positive definite. On the other hand, .

the determinant of any minors of the matrix (ast) is in k',

so that the determinat of any minor of the matrix T(aSt) is
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also in k', Hence (ast) must be positive definite, which

is a contradiction.

Proof of Theorem 20-1. The sufficiency of the

condition in Theorem 20-1 follows easily from Lemma 20-17

and 20-18. (We omit the proof of the necessity.)

Proposition 20-1. If a hyperbolic Coxeter group ?%0

= {W S} is not compact and if F+ is arithmetic, then k = @l.

Proof. From Theorem 17-2 and Theorem 17—3, there
exists s in S such that (brt)r,t+s is degenerate and
m positive'. Suppose k 1 @ . Then there exists an isomorphism
7 of k into R different from the identity. We may extend =
to an isomorphism of k. By Lemma 20-17, T(ast) is positive
o T C ey -
definite. Hence (art)r,t+s is also positive definite.

Then (art)r,t+s is non-degenerate and this is a contradiction

Remark: This result follows also directly from the

- general "Godemaut criterion” cf, [3] Theorem 11.6.

§21. Examples of non-arithmetic subgroups.

In view of Lemma 20-18 we are interested in hyperbolic

Coxeter groups whose graphs contain at least one edge with

“J ' index > 3.




~ T4 -

Example 21-1. Non-compact case, We congsider the non-

compact hyperbolic Coxeter groups whose graphs are respectivel

TI0T 07 <

In these cases k is respectively Q(v2), Q(2, v3), a(/3),
Q(WV3, v5), Q(v2), Q(v5), Q(vB). Therefore, in each case
the cqrresponding‘group F+ is not arithmetic (cf. Prop.

20-1)..

Example 21-2, Compact case. Consider the compact

hyperbolic Coxeter group with the graph

4

5
Here we have k = k = Q(v2, v5). Let T be the isomorphism of
k into  defined by 7(v5) = 5, 1(v2) = vZ. Then "(a_,)
1s not positive definite and hence the corresponding group

T+ is not arithmetic by Theorem-EO—l.
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